Axiom User Guide

Axiom User Guide
1.2.10

Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this
work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance with the License. Y ou may obtain a copy of the License at

http://www.apache.org/licenses/LI CENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS |S' BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
and limitations under the License.

http://www.apache.org/licenses/LICENSE-2.0

Table of Contents

O [gL oo (0 1o o R PP PPPPTI 1
WL IS AXIOMT ..ttt et ettt e et et e e et et e e e e et e e e enbanaeeens 1

For whom i thisS TULOI@I? ... e 1
What iS PUI ParSiNg?uneiiiii ettt ettt e et e e 1

A Bt OF HISLOMY .eeeei et 1
FEAIUIES OF AXIOM ...ttt et e et e et e e 2

A Bit ADOUL CaChING ...oeveeieei et 3
Where Does SOAP COME INLO PlaY?ccuuueiiiiie ettt 3

2. WOrKing WIth AXIOMcceeiieiiii ettt e e e et e e e e e e era s 4
Obtaining the AXIOM BiNGIYiiiiiiiiiiiii ettt e e e e e e eni e eees 4

104 1= (oo H T PO P TR SPPPTTRN 4
Adition OF NOUESooueiiiei et e s 6
L L £ 0T TP PP PR PTTRRP 7
SETAlIZEN . e 7
Complete Code for the Axiom based Document Building and Serializationcccevene.. 8
Creating stream readers and writers using St AXUE i IS coooveiiiiiiiic e 9
REIEASING The PAISEN . .oeei et 9
EXCEPLiON NanliNgcovvneiiiii e 10

3. Advanced Operations With AXIOMciiiue et e e e e e e eene e eees 12
Use of the OVNavi gat or for Traversali i 12
ACCESSING the PUIl PaISar ... e 12

4. Integrating AXiOm iNtO YOUI PrOJECTueieeriieeiiti e ettt e ettt e et e e e e e et e e et e e e enaes 13
Using AXiOmM iN @ MaVen 2 PrOJECeiiiiiieiiii ettt e e e eees 13
Adding AXiOm @S @ dEPENAENCYc.vuniiiiiiiei ettt 13

Managing the JAF and JavaMail dependencCiesvveveviiieiiiiiieeiii e 13

Applying application wide ConfigUIrationuiiiiiiiiiiiiiieee e 14
Changing the default StAX factory Settingsveveeeeieiiiiiee e 14

Migrating from older AXiOM VEISIONSccouuuiiiiiiiieeiii ettt e e e e e e eeees 16
Changes in AXIOM L.2.9 ...t 16

5. Common mistakes, problems and anti-Patternscooeuuiieiiiiiiee e 18
Violating thej avax. acti vati on. Dat aSour ce CONtractcccuvuveveeiniieeeeiinneeennns 18
Issues that “magically” diSAPPEANcoovuieiiiii e 19

The OM-inside-OMDataSource anti-patterneeeeuiieieeiieeee e e eeri e 20
WWEBK VEISION ..ottt e et e e et e et et 20

SIFONG VEISION ..ttt et ettt ettt ettt et e e e e e e enan s 21

B, APPENTIX .ttt et a e e 23
Program Listing for Build and Serializeccuuiiiiiiiiiiiii e 23
LITIKS ettt 23
REFEIENCES ..ot e et aee 25

List of Figures

1.1, ATCRITECIUIE OVEIVIEIWiiieieii et e e e e e et e et e et e e et e e et e e e e eenas
2.1. The Axiom API with different implementationsScccuuiiiiiiiir e

List of Examples

2.1. Creating an object model from an iNPUL SEFEAIMiiiiiiiieiiii e e 4
2.2. Creating an object model programmatiCallyooveuuiiiiiiiiiieie e 5
2.3. Creating an OM document With NAMESPECEScovuuniiiiii e 7
5.1. Dat aSour ce implementation that violates the interface contractc.ocoiiiiiiiiiinnns 19
5.2. OVDat aSour ce#get Reader () implementation used by ADBccooiiiiiiiiiiiiiiiinenennnn, 20
5.3. Proper implementation of the OvDat aSour ce#seri al i ze methodcocoeeiiiennnnnn. 21

Vi

Chapter 1. Introduction

What is Axiom?

Axiom stands for Axis Object Model and refers to the XML infoset model that is initially developed for
Apache Axis2. XML infoset refers to the information included inside the XML, and for programmatic
manipulation it is convenient to have a representation of this XML infoset in a language specific
manner. For an object oriented language the obvious choice is a model made up of objects. DOM
[http://lwww.w3.0rg/DOM/] and JDOM [http://www.jdom.org/] are two such XML models. Axiom is
conceptually similar to such an XML model by its external behavior but deep down it is very much
different. The objective of this tutoria is to introduce the basics of Axiom and explain the best practices
to be followed while using Axiom. However, before diving in to the deep end of Axiom it isbetter to skim
the surface and see what it is all about!

For whom is this Tutorial?

Thistutorial can be used by anyonewho isinterested in Axiom and needsto gain adeeper knowledge about
the model. However, it is assumed that the reader has a basic understanding of the concepts of XML (such
as Namespaces) and aworking knowledge of tools such as Ant. Knowledge in similar object models such
as DOM will be quite helpful in understanding Axiom, mainly to highlight the differences and similarities
between the two, but such knowledge is not assumed. Several links arelisted in the section called “Links”
that will help understand the basics of XML.

What is Pull Parsing?

Pull parsing is a recent trend in XML processing. The previously popular XML processing frameworks
such as SAX [http://fen.wikipedia.org/wiki/Simple_API_for_XML] and DOM [http://en.wikipedia.org/
wiki/Document_Object_ Model] were "push-based” which means the control of the parsing was in the
hands of the parser itself. This approach is fine and easy to use, but it was not efficient in handling large
XML documents since acomplete memory model will be generated in the memory. Pull parsing invertsthe
control and hence the parser only proceeds at the users command. The user can decide to store or discard
events generated from the parser. Axiom is based on pull parsing. To learn more about XML pull parsing
see the XML pull parsing introduction [http://www.bearcave.com/software/java/xml/xmlpull.html].

A Bit of History

As mentioned earlier, Axiom was initially developed as part of Axisand simply called OM. The original
OM was proposed as a store for the pull parser events for later processing, at the Axis summit held
in Colombo, Sri Lanka, in September 2004. However, this approach was soon improved and OM was
pursued as a complete XML infoset [http://dret.net/glossary/xmlinfoset] model due to its flexibility.
Several implementation techniques were attempted during the initial phases. The two most promising
techniques were the table based technique and the link list based technique. During the intermediate
performance tests the link list based technique proved to be much more memory efficient for smaller
and mid sized XML documents. The advantage of the table based OM was only visible for the large and
very large XML documents, and hence, the link list based technique was chosen as the most suitable.
Initial efforts were focused on implementing the XML infoset (XML Information Set) items which are
relevant to the SOAP specification (DTD support, Processing Instruction support, etc were not considered).
The advantage of having a tight integration was evident at this stage and this resulted in having SOAP
specific interfaces as part of OM rather than a layer on top of it. OM was deliberately made API [http://

http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.jdom.org/
http://www.jdom.org/
http://en.wikipedia.org/wiki/Simple_API_for_XML
http://en.wikipedia.org/wiki/Simple_API_for_XML
http://en.wikipedia.org/wiki/Document_Object_Model
http://en.wikipedia.org/wiki/Document_Object_Model
http://en.wikipedia.org/wiki/Document_Object_Model
http://www.bearcave.com/software/java/xml/xmlpull.html
http://www.bearcave.com/software/java/xml/xmlpull.html
http://dret.net/glossary/xmlinfoset
http://dret.net/glossary/xmlinfoset
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Application_programming_interface

Introduction

en.wikipedia.org/wiki/Application_programming_interface] centric. It allowstheimplementationsto take
place independently and swapped without affecting the program later.

Features of Axiom

Axiom is a lightweight, deferred built XML infoset representation based on StAX (JSR 173 [http://
www.jcp.org/en/jsr/detail 2id=173]), which is the standard streaming pull parser API. The object model
can be manipulated as flexibly as any other object model (Such as JDOM [http://www.jdom.org/]), but
underneath, the objects will be created only when they are absolutely required. This leads to much less
memory intensive programming. Following is a short feature overview of OM.

» Lightweight: Axiom is specifically targeted to be lightweight. This is achieved by reducing the depth
of the hierarchy, number of methods and the attributes enclosed in the objects. This makes the objects
less memory intensive.

» Deferred building: By far thisis the most important feature of Axiom. The objects are not made unless
a need arises for them. This passes the control of building over to the object model itself rather than
an external builder.

* Pull based: For adeferred building mechanism apull based parser isrequired. Axiom isbased on StAX
[http://today .java.net/pub/altoday/2006/07/20/introducti on-to-stax.html], the standard pull parser API.

Axiom istightly bound to StAX API. To work with Axiom a StAX compliant parser and the
/ APl must be present in the classpath.

The Following image shows how Axiom API is viewed by the user

Figure 1.1. Architecture overview

(" OM Architecture ~
Builder Interface OM API
StAX Stream Reader
Raw XML Stream
[10100010101010] User
k — >

OM Builder wraps the raw xml character stream through the StAX reader API. Hence, the complexities
of the pull event stream is transparent to the user.

http://en.wikipedia.org/wiki/Application_programming_interface
http://www.jcp.org/en/jsr/detail?id=173
http://www.jcp.org/en/jsr/detail?id=173
http://www.jcp.org/en/jsr/detail?id=173
http://www.jdom.org/
http://www.jdom.org/
http://today.java.net/pub/a/today/2006/07/20/introduction-to-stax.html
http://today.java.net/pub/a/today/2006/07/20/introduction-to-stax.html

Introduction

A Bit About Caching

Since Axiom is adeferred built object model, It incorporates the concept of caching. Caching refersto the
creation of the objectswhile parsing the pull stream. Thereason why thisissoimportant is because caching
can be turned off in certain situations. If so the parser proceeds without building the object structure. User
can extract the raw pull stream from Axiom and use that instead of the object model. In this case it is
sometimes beneficial to switch off caching. Chapter 3, Advanced Operations with Axiom explains more
on accessing the raw pull stream and switching on and off the caching.

Where Does SOAP Come into Play?

In a nutshell SOAP [http://www.w3schools.com/SOAP/soap_intro.asp] is an information exchange
protocol based on XML. SOAP has a defined set of XML elementsthat should be used in messages. Since
Axis2 isa"SOAP Engine" and Axiom isbuilt for Axis2, a set of SOAP specific objects were also defined
along with Axiom. These SOAP Objects are extensions of the general object model classes.

http://www.w3schools.com/SOAP/soap_intro.asp
http://www.w3schools.com/SOAP/soap_intro.asp

Chapter 2. Working with Axiom
Obtaining the Axiom Binary

There are several methods through which the Axiom binary can be obtained:

1. If your project uses Maven, then it is sufficient to add Axiom as a dependency, as described in the
section called “Using Axiom in aMaven 2 project”. Releases are avail able from the central repository,
and snapshots are availablefrom ht t p: / / r eposi t ory. apache. or g/ snapshot s/ .

2. A prebuilt binary distribution can be downloaded [http://ws.apache.org/axiom/downl oad.cgi] from the
site. Source distributions are also available. They can be built using Maven 2, by executing mvn install
in the root directory of the distribution.

3. Itisaso possibleto check out the source code for the current development version (trunk) or previous
releases from the Subversion repository and build it using Maven 2. Detailed information on getting
the source code from the Subversion repository is found here [http://ws.apache.org/axiom/source-
repository.html].

Once the Axiom binary is obtained by any of the above ways, it should be included in the classpath
for any of the Axiom based programs to work. Subsequent sections of this guide assume that this build
stepiscompleteand axi om api - 1. 2. 10. j ar andaxi om i npl - 1. 2. 10. j ar are present inthe
classpath along with the StAX API jar file and a StAX implementation.

Creation

Creation isthe first and foremost action when using an Object representation. This part explains how the
object model can be built from an existing document or simply programmatically. Axiom providesanotion
of afactory and a builder to create objects. The factory helps to keep the code at the interface level and
the implementations separately as shown in Figure 2.1, “The Axiom API with different implementations’.
Since Axiom istightly bound to StAX, a StAX compliant reader should be created first with the desired
input stream. Then one can select one of the different builders available.

St AXOVBUi | der will build pure XML infoset compliant object model whilst the
SOAPMbdel Bui | der returns SOAP specific objects (such as the SOAPENnvel ope, which are sub
classes of the OVEl enrent) through its builder methods. The following piece of code shows the correct
method of creating an object model from an input stream.

Example 2.1. Creating an object model from an input stream

[/create the parser
XM_St r eanReader parser = XM.I nput Fact ory. newl nstance(). creat eXM.St r eanReader (new F

[/create the builder
St AXOMVBUI | der bui | der = new St AXOVBuI | der (par ser);

//get the root element (in this case the envel ope)
OMVEl enrent docunent El emrent = bui | der. get Docunent El enent () ;

As the example shows, creating an object model from an input stream is pretty straightforward.
However, elements and nodes can be created programmatically to modify the structure as
well. The recommended way to create Axiom objects programmatically is to use the factory.

http://ws.apache.org/axiom/download.cgi
http://ws.apache.org/axiom/download.cgi
http://ws.apache.org/axiom/source-repository.html
http://ws.apache.org/axiom/source-repository.html
http://ws.apache.org/axiom/source-repository.html

Working with Axiom

OVAbst ract Fact ory. get OMFact or y() will return the proper factory and the creator methods
for each type that should be caled. Currently Axiom has two builders, namely the OM builder
(St AXOVBUI | der) and the SOAP modd builder (St AXSOQAPNbdel Bui | der). These builders
provide the necessary information to the XML infoset model to build itself.

Figure 2.1. The Axiom API with different implementations

O Factony

Lirnkeed List
Based
Implementation

(o

. A

A simple exampleis shown below:

Example 2.2. Creating an object model programmatically

/lcreate a factory

OwFactory factory = OMAbstract Factory. get OMactory();
//use the factory to create two nanespace objects
OWanespace nsl = factory. creat eOVNanespace("bar", " x"
OWanespace ns2 = factory. creat eOWNanespace("bar1","y");
/luse the factory to create three el enents

OMEl ement root = factory. creat eOVEl enent ("root", nsl);
OVEl ement elt11 = factory. creat eOVEl enent ("fool", nsl);

OVEl ement elt12 = factory. creat eOVEl enent ("f 002", nsl);

Thereason asto haveaset of f act ory. cr eat eXXX methodsisto cater for different implementations,
but keep the programmers code intact. Its highly recommended to use the factory for creating Axiom
objects as this will ease the switching of different Axiom implementations. Several differences exist
between a programmatically created OMNode and a conventionally built OVNode. The most important
difference is that the former will have no builder object enclosed, where as the latter always carries a
reference to its builder.

Asstated earlier, sincethe object model isbuilt asand when required, each and every OMNode should have
areference to its builder. If thisinformation is not available, it is due to the object being created without
a builder. This difference becomes evident when the user tries to get a non caching pull parser from the
OMEl enrent . Thiswill be discussed in more detail in Chapter 3, Advanced Operations with Axiom.

In order to understand the requirement of the builder reference in each and every OVNode, consider the
following scenario. Assume that the parent element is built but the children elements are not. If the parent
is asked to iterate through its children, this information is not readily available to the parent element and
it should build its children first before attempting to iterate them. In order to provide a reference of the
builder, each and every node of the object model should carry the reference to its builder. Each and every

Working with Axiom

OWNode carries aflag that states its build status. Apart from this restriction there are no other constraints
that keep the programmer away from mixing up programmatically made OVNode objects with OvNode
objects built from builders.

The SOAP object hierarchy is made in the most natural way for a programmer. An inspection of the API
will show that it is quite close to the SAAJ API but with no bindings to DOM or any other model. The
SOAP classes extend basic Axiom classes (such as the OVEl enent) hence, one can access a SOAP
document either with the abstraction of SOAP or drill down to the underlying XML Object model with
asimple casting.

Addition of Nodes

Addition and removal methods are primarily defined in the OVEl enment interface. The following are the
most important in adding nodes.

public void addChi | d(OVNode onNode);
public void addAttri bute(OVAttribute attr);

This code segment shows how the addition takes place. Note that it is related to the code listings
Example 2.1, “ Creating an object model from an input stream” & Example 2.2, “ Creating an object model
programmatically” in the section called “Creation”.

//set the children

el t11. addChil d(elt21);
el t12. addChil d(el t22);
root.addChild(eltll);
root.addChild(elt12);

e addChi | d will dways add the child as the last child of the parent.

» A given node can be removed from the tree by calling the det ach() method. A node can also be
removed from the tree by calling the remove method of the returned iterator which will also call the
detach method of the particular node internally.

» Namespacesareatricky part of any XML object model andisthe samein Axiom. However, theinterface
to the namespace have been made very simple. OMNanes pace isthe classthat represents a namespace
with intentionally removed setter methods. This makes the OMNanespace immutable and allows the
underlying implementation to share the objects without any difficulty.

Following are the important methods available in OVEl enent to handle namespaces.

publ i ¢ OMNanespace decl areNanespace(String uri, String prefix);
publ i ¢ OMNanespace decl areNanespace(OVNanespace namnespace);
publi c OMNanespace findNanmespace(String uri, String prefix) throws QOvExcepti on;

The decl ar eNanmespaceXX methods are fairly straightforward. Add a namespace to namespace
declarations section. Note that a namespace declaration that has already being added will not be added
twice. f i ndNanespace isavery handy method to locate anamespace object higher up the object tree. It
searches for a matching namespace in its own declarations section and jumpsto the parent if it's not found.
The search progresses up the tree until a matching namespace is found or the root has been reached.

During the serialization adirectly created namespace from thefactory will only be added to the declarations
when that prefix is encountered by the serializer. More of the serialization matters will be discussed in
the section called “ Serializer”.

The following simple code segment shows how the namespaces are dealt in OM

Working with Axiom

Example 2.3. Creating an OM document with namespaces

OwFactory factory = OMAbstract Factory. get OMactory();
OWanespace nsl = factory. creat eOVNanespace("bar", " x"
OMEl ement root = factory. creat eOVEl enent ("root", nsl);
OWanespace ns2 = root.decl areNanmespace("bar1","y");
OMVEl emrent eltl = factory. creat eOVEl enent ("foo0", nsl);
OVEl enent elt2 = factory. creat eOVEl emrent ("yuck", ns2);
OMlext txtl = factory.createOuliext(elt2,"blah");
elt2.addChild(txtl);

eltl.addChild(elt2);

root.addChild(eltl);

Serialization of the root element produces the following XML.:

<x:root xm ns:x="bar" xm ns:y="bar1"><x:foo><y: yuck>bl ah</y: yuck></ x: f oo></ x: r oot >

Traversing

Traversing the object structure can be done in the usual way by using the list of children. Note however,
that the child nodes arereturned as aniterator. The Iterator supportsthe'Axiom way' of accessing elements
andismore convenient than alist for sequential access. Thefollowing code sample shows how the children
can be accessed. The children are of the type OVNode that can either be OMText or OVEl enent .

Iterator children = root.getChildren();
whi [e(chi |l dren. hasNext ()){

OWode node = (OWNode) chil dren. next();
}

Apart from this, every OVMNode has links to its siblings. If more thorough navigation is needed
the get Next OVSIi bl i ng() and get Previ ousOVSi bl i ng() methods can be used. A more
selective set can be chosen by using the get Chil drenWt hName(QNane) methods. The
get Chi | dW t hNanme(Qnanme) method returns the first child that matches the given QNane and
get Chi | drenW t hNane(QNane) returns a collection containing al the matching children. The
advantage of these iteratorsis that they won't build the whole object structure at once, until its required.

All iterator implementations internally stay one step ahead of their apparent location to
provide the correct value for the hasNext () method. This hidden advancement can build
elementsthat are not intended to be built at all. Hence these iterators are recommended only
when caching is not a concern.

Serializer

An Axiom tree can be serialized either asthe pure object model or the pull event stream. The serialization
usesa XM_St ream i t er object to write out the output and hence, the same serialization mechanism
can be used to write different types of outputs (such astext, binary, etc.).

A caching flag is provided by Axiom to control the building of thein-memory object model. The OVNode
has two methods, seri al i zeAndConsune and seri al i ze. When seri al i zeAndConsune is
called the cache flag is reset and the serializer does not cache the stream. Hence, the object model will
not be built if the cache flag is not set.

The serializer serializes namespaces in the following way:

Working with Axiom

1. When anamespace that is in the scope but not yet declared is encountered, it will then be declared.

2. When anamespacethat isin scope and already declared is encountered, the existing declarations prefix
is used.

3. When the namespaces are declared explicitly using the elements decl ar eNanespace() method,
they will be serialized even if those namespaces are not used in that scope.

Because of this behavior, if afragment of the XML is serialized, it will also be namespace qualified with
the necessary namespace declarations.

Here is an example that shows how to write the output to the console, with reference to the earlier code
sample- Example 2.1, “ Creating an object model from an input stream” that created a SOAP envelope.

XM_StreamWiter witer = XM.Qut put Factory. new nstance().createXM.Stream/Niter(Syst
[/ dunp the output to console with caching

envel ope. serialize(witer);

witer.flush();

or simply
Systemout.println(root.toStri ngWthConsune());

The above mentioned features of the serializer forcesacorrect serialization evenif only apart of the Axiom
tree is serialized. The following serializations show how the serialization mechanism takes the trouble
to accurately figure out the namespaces. The example is from Example 2.3, “ Creating an OM document
with namespaces’ which creates a small object model programmatically. Serialization of the root element
produces the following:

<x:root xm ns:x="bar" xm ns:y="bar 1"><x: f oo><y: yuck>bl ah</y: yuck></ x: f 0o></ x: r oot >
However, serialization of only the foo element produces the following:
<x:foo xm ns: x="bar"><y:yuck xml ns:y="bar1">bl ah</y: yuck></x: f 00>

Note how the serializer puts the relevant namespace declarations in place.

Complete Code for the Axiom based Document
Building and Serialization

The following code segment shows how to use Axiom for completely building a document and then
serializing it into text pushing the output to the console. Only the important sections are shown here. The
complete program listing can be found in Chapter 6, Appendix.

/lcreate the parser

XMLSt r eanReader parser = XM.I nput Factory. newl nstance(). creat eXM.St r eanReader (new F
//create the buil der

St AXOMBui | der bui | der = new St AXOVBuI | der (par ser);

//get the root elenent (in this case the envel ope)
OVEl enent docunent El ement = bui | der. get Docunent El enent () ;

//dunmp the out put to console with caching
System out . printl n(docunent El enent.toStri ngWthConsune());

Working with Axiom

Creating stream readers and writers using
StAXUti|s

The normal way to create XML St r eanrReader and XMLSt r eamN i t er instancesisto first request a
XMLI nput Fact ory or XM_Qut put Fact or y instance from the StAX API and then use the factory
methods to create the reader or writer.

Doing this every time a reader or writer is created is cumbersome and also introduces some
overhead because on every invocation the newl nst ance methods in XMLl nput Fact ory and
XM_CQut put Fact or y gothrough the process of |ooking up the StAX implementation to use and creating
anew instance of thefactory. The only case wherethisisreally needed iswhen it is necessary to configure
the factory in a special way (by setting propertieson it).

Axiom has a utility class called St AXUt i | s that provides methods to easily create readers and writers
configured with default settings. It also keeps the created factories in a cache to improve performance.
The caching occurs by (context) class loader and it is therefore safe to use St AXUt i | s in a runtime
environment with a complex class loader hierarchy.

instances are thread safe. This is the case for Woodstox (which is the default StAX
implementation used by Axiom), but not e.g. for the StAX implementation shipped with
Sun's Java 6 runtime environment. Therefore, when using Axiom versions prior to 1.2.9, you
shouldavoid using St AXUt i | s together with aStA X implementation other than Woodstox,
especialy in ahighly concurrent environment. The issue has been fixed in Axiom 1.2.9. See
WSCOMMONS-489 [https://issues.apache.org/jiralbrowse/WSCOMMONS-489] for more
details.

f. Axiom 1.2.8 implicitly assumed that XMLI nput Fact ory and XM_Qut put Fact ory

St AXUt i | s also enables a property file based configuration mechanism to change the default factory
settings at assembly or deployment time of the application using Axiom. Thisis described in more details
in the section called “ Changing the default StAX factory settings’.

The get | nput Fact ory and get Qut put Fact ory methods in St AXUti | s give
access to the cached factories. In versions prior to 1.2.9, Axiom didn't restrict access to
theset Pr oper t y method of these factories. In principle this makes it possible to change
the configuration of these factories for the whole application. However, since this depends
on the implementation details of St AXUt i | s (e.g. how factories are cached) and since
thereis a proper configuration mechanism for that purpose, using this possibility is strongly
discouraged. Starting with version 1.2.9, Axiom restricts access to set Property to
prevent tampering with the cached factories.

Themethodsin St AXUt i | s to createreadersand writersare rather self-explaining. For exampleto create
an XMLSt r eanReader froman | nput St r eam use the following code:

InputStreamin = ...
XMLSt r eanReader reader = StAXUtils. creat eXM.StreanReader (in);

Releasing the parser

As we have seen previously, when creating an object model from a stream, all nodes keep a reference
to the builder and thus to the underlying parser. Since an XML parser instance is a heavyweight object,
it is important to release it as soon as it is no longer required. The ¢l ose method defined by the
OvBeri al i zabl e interface it used for that. Note that it doesn't matter an which node this method is

https://issues.apache.org/jira/browse/WSCOMMONS-489
https://issues.apache.org/jira/browse/WSCOMMONS-489

Working with Axiom

called; it will always close and release the parser for the whole tree. Thebui | d parameter of thecl ose
method specifies if the node should be built before closing the parser.

Toillustrate this, consider Example 2.1, “ Creating an object model from an input stream”. After finishing
the processing of the object model and assuming that it will not access the object model afterwards, the
code should be completed by the following instruction:

docunent El erent . cl ose(fal se);

Closing the parser is especially important in applications that process large numbers of XML documents.
In addition, some StAX implementation are able to “recycle” parsers, i.e. to reset a parser instance and to
reuse it on another input stream. However, this can only work if the parser has been closed explicitly or
if the instance has been marked for finalization by the Java VM. Closing the parser explicitly as shown
above will reduce the memory footprint of the application if thistype of parser is used.

Exception handling

Thefact that Axiom uses deferred building meansthat acall to amethod in one of the object model classes
may cause Axiom to read events from the underlying StAX parser, unless the node has aready been built
or if it was created programmatically. If an 1/O error occurs or if the XML document being read is not
well formed, an exception will be reported by the parser. This exception is propagated to the user code
asan OVExcepti on.

Notethat OVExcept i on isan unchecked exception. Strictly speaking thisisin violation of the principle
that unchecked exceptions should be reserved for problems resulting from programming problems. There
are however several compelling reasons to use unchecked exceptions in this case:

e The same API is used to work with programmatically created object models and with object models
created from an XML document. On a programmatically created object model, an OVExcept i on in
general indicates aprogramming problem. Moreover one of the design goals of Axiomisto givethe user
code theillusion that it is interacting with a complete in-memory representation of an XML document,
even if behind the scenes Axiom will only create the objects on demand. Using checked exceptions
would break that abstraction.

* In most cases, code interacting with the object model will not be able to recover from an
OVExcept i on. Consider for example autility method that receives an OVEl enent asinput and that
is supposed to extract some data from thisinformation item. When aparsing error occurswhileiterating
over the children of that element, thereis nothing the utility method could do to recover from thiserror.

The only place where it makes sense to catch this type of exception and to attempt to recover fromitis
in the code that createsthe XML St r eanrReader and builder. It isclear that it would not be reasonable
to force devel opersto declare a checked exception on every method that interacts with an Axiom object
model only to alow propagation of that exception to the code that initially created the parser.

The situation is actually quite similar to that encountered in three-tier applications, where the DAO layer
in general wraps checked exceptions from the database in an unchecked exception because the business
logic and the presentation tier will not be able to recover from these errors.

When catching an OVExcept i on special attention should be paid if the code handling the exception again
tries to access the object model. Indeed this will inevitably result in another exception being triggered,
unless the code only accesses those parts of the tree that have been built successfully. E.g. the following
code will give unexpected results because the call to seri al i zeAndConsune will amost certainly
trigger another exception:

OMEl enent el enent = ...

10

Working with Axiom

try {

} catch (OvException ex) ({
ex. print StackTrace();
el ement . seri al i zeAndConsune(Syst em out) ;

}

A

10000000,

=

In Axiom versions prior to 1.2.8, an attempt to access the object model after an exception
has been reported by the underlying parser may resultinan Qut Of Menor yEr r or or cause
Axiom to lock itself up in an infinite loop. The reason for this is that in some cases, after
throwing an exception, the Woodstox parser (which is the default StAX implementation
used by Axiom) is left in an inconsistent state in which it will return an infinite sequence
of events. Starting with Axiom 1.2.8, the object model builder will never attempt to read
new events from a parser that has previously reported an |/O or parsing error. These versions
of Axiom aretherefore safe; see WSCOMMONS-372 [https://issues.apache.org/jiralbrowse/
WSCOMMONS-372] for more details.

The discussion in this section suggests that Axiom should make a clear distinction between
exceptions caused by parser errors and exceptions caused by programming problems or other
errors, e.g. by using distinct subclasses of OVExcept i on. Thisis currently not the case.
Thisissue may be addressed in afuture version of Axiom.

11

https://issues.apache.org/jira/browse/WSCOMMONS-372
https://issues.apache.org/jira/browse/WSCOMMONS-372
https://issues.apache.org/jira/browse/WSCOMMONS-372

Chapter 3. Advanced Operations with
Axiom

Use of the OWMNavi gat or for Traversal

Axiom provides a utility class to navigate the object model structure. The navigator provides an in-order
traversal of the Axiom tree up to the last-built node. The Navigator has two states called the navigable
state and the completion state. Since the navigator provides the navigation starting from an OVEl enent ,
it is deemed to have compl eted the navigation when the starting node is reached again. This state is known
as the completion state. Once the navigator has reached the complete status its navigation is done and it
cannot proceed.

It is possible that the Axiom tree does not get built completely when it is navigated. The navigable status
shows whether the tree structure is navigable. When the navigator iscompleteit is not navigable anymore.
However, it is possible for a navigator to become non-navigable without being complete. The following
code sample shows how the navigator should be used and handled using its states.

/1 Create a navigator
OWNavi gat or navi gat or = new OWNavi gat or (envel ope) ;
OWNode node = nul|;
whi | e (navigator.isNavigable()) {
node = navi gator.next();
}

Accessing the Pull Parser

Axiom is tightly integrated with StAX and the get XMLStreanReader() and
get XMLSt r eanReader Wt hout Cachi ng() methods in the OVEl enent provides a
XM_St r eanReader object. This XMLSt r eanReader instance has a specia capability of switching
between the underlying stream and the Axiom object tree if the cache setting is off. However, this
functionality is completely transparent to the user. Thisis further explained in the following paragraphs.

Axiom has the concept of caching, and the Axiom tree is the actual cache of the events fired. However,
the requester can choose to get the pull events from the underlying stream rather than the Axiom tree.
This can be achieved by getting the pull parser with the cache off. If the pull parser was obtained
without switching off cache, the new events fired will be cached and the tree updated. This returned
pull parser will switch between the object structure and the stream underneath, and the users need
not worry about the differences caused by the switching. The exact pull stream the original document
would have provided would be produced even if the Axiom tree was fully or partialy built. The
get XMLSt r eanrReader Wt hout Cachi ng() method is very useful when the events need to be
handled in a pull based manner without any intermediate models. This makes such operations faster and
efficient.

For consistency reasons once the cache is switched off it cannot be switched on again.

12

Chapter 4. Integrating Axiom into your
project
Using Axiom in a Maven 2 project

Adding Axiom as a dependency

If your project uses Maven 2, it is fairly easy to add Axiom to your project. Simply add the following
entriesto thedependenci es section of pom xmi :

<dependency>
<gr oupl d>or g. apache. ws. conmons. axi onx/ gr oupl d>
<artifactld>axi omapi </artifactld>
<versi on>1. 2. 10</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. apache. ws. conmons. axi onx/ gr oupl d>
<artifactld>axi ominpl</artifactld>
<versi on>1. 2. 10</ ver si on>

</ dependency>

All Axiom releases are deployed to the Maven central repository and there is no need to add an entry to
ther eposi t ori es section. However, if you want to work with the development (snapshot) version of
Axiom, it is necessary to add the Apache Snapshot Repository:

<repository>
<i d>apache. snapshot s</i d>
<nane>Apache Snapshot Repository</ nane>
<url >http://repository. apache. or g/ snapshots/ </ url >
<rel eases>
<enabl ed>f al se</ enabl ed>
</rel eases>
</ repository>

If you are working on another Apache project, you don't need to add the snapshot repository
@ inthe POM file sinceit isaready declared in the or g. apache: apache parent POM.

Managing the JAF and JavaMail dependencies

Axiom requires the Java Activation Framework (JAF) and the JavaMail API to work. There are two
commonly used incarnations of these libraries: one is Sun's reference implementation, the other is part
of the Geronimo [http://geronimo.apache.org/] project. Axiom declares dependencies on the Geronimo
versions (though that might change [https.//issues.apache.org/jiralbrowse/WSCOMMONS-417] in the
future). If your project uses another library that depends on JAF and/or JavaMail, but that refersto Sun's
implementation, your project will end up with dependencies on two different artifacts implementing the
same API.

If you prefer Sun's implementations, then you should change the declaration of the Axiom dependencies
in your POM file asfollow:

13

http://geronimo.apache.org/
http://geronimo.apache.org/
https://issues.apache.org/jira/browse/WSCOMMONS-417
https://issues.apache.org/jira/browse/WSCOMMONS-417

Integrating Axiom into your project

<dependency>
<gr oupl d>or g. apache. ws. conmons. axi onx/ gr oupl d>
<artifactld>axi om xxx</artifactld>
<versi on>1. 2. 10</ ver si on>
<excl usi ons>
<excl usi on>
<gr oupl d>or g. apache. ger oni no. specs</ gr oupl d>
<artifactld>geroni m-activation_1.1 spec</artifactld>
</ excl usi on>
<excl usi on>
<gr oupl d>or g. apache. ger oni no. specs</ gr oupl d>
<artifactld>geronino-javamail 1.4 spec</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>

If you prefer Geronimo's implementation, then you need to identify the libraries depending on
Sun's artifacts (j avax. acti vati on: acti vati onandj avax. nmai |l : mai |) and add the relevant
exclusions. You can use nvn dependency: tree to easily identify where a transitive dependency
comes from.

The choice between Sun's and Geronimo's implementation is to a large extend a question of belief.
Note however that the ger oni no-j avamai |l _1. 4_spec artifact used by Axiom only contains the
JavaMail API, while Sun's library bundles the API together with the providers for IMAP and POP3.
Depending on your use case that might be an advantage or disadvantage.

Applying application wide configuration

Sometimes it is necessary to customize some particular aspects of Axiom for an entire application. There
are severa things that can be configured through system properties and/or property files. This is aso
important when using third party applications or libraries that depend on Axiom.

Changing the default StAX factory settings

00000000, The information in this section only applies to XM.StreanReader or
/ XM.St reamW i t er instancescreatedusing St AXUt i | s (seethesectioncalled“ Creating
l | stream readers and writers using St AXUt i | s”). Readers and writers created using the
standard StAX APIs will keep their default settings as defined by the implementation (or

dictated by the StAX specifications).

00000000 The feature described in this section was introduced in Axiom 1.2.9.

=

When creating a new XM.I nputFactory (resp. XM.I nput Factory), StAXUtils
looks for a propety file named XM_I nput Fact ory. properties (resp.
XMLQut put Fact ory. properti es) in the classpath, using the same class loader as the one from
which thefactory isloaded (by default thisisthe context classloader). If acorresponding resourceisfound,
thepropertiesin that fileare applied to thefactory usingthe XMLI nput Fact or y#set Property (resp.
XM_Qut put Fact or y#set Proper t y) method.

This feature can be used to set factory properties of type Bool ean, | nt eger and String. The
following sections present some sample use cases.

14

Integrating Axiom into your project

Changing the serialization of the CR-LF character sequence

Section 2.11 of [XML] specifies that an “XML processor must behave as if it normalized all line breaks
in external parsed entities (including the document entity) on input, before parsing, by translating both the
two-character sequence #xD #xA and any #xD that is not followed by #xA to a single #xA character.”
Thisimpliesthat when aWindows style line ending, i.e. a CR-LF character sequenceis serialized literally
into an XML document, the CR character will be lost during deserialization. Depending on the use case
this may or may not be desirable.

The only way to strictly preserve CR charactersisto serialize them as character entities, i.e.  . This
is the default behavior of Woodstox. This can be easily checked using the following Java snippet:

OWFactory factory OwvAbst ract Fact ory. get OWFact ory() ;

OMVEl enent el ement = factory. createQOVEl enent("root", null);
el enent . set Text ("Test\r\nwith CRLF");

el ement . serialize(System out);

This code produces the following output:

<r oot >Test 
with CRLF</root>

00000000, From Axiom's point of view thisis actually areasonable behavior. The reason is that when
/ creating an OMI'ext node programmatically, it is easy for the user code to normalize the
l | text content to avoid the appearance of the character entity. On the other hand, if the default
behavior wasto serialize CR-LF literally (implying that the CR character will belost during
deserialization), it would be difficult (if not impossible) for user code that needs to strictly
preserve the text data to construct the object model in such a way as to force serialization

of the CR as character entity.

In some cases this behavior may be undesirable. Fortunately Woodstox allows to modify this
behavior by changing the value of the com ctc. wst x. out put EscapeCr property on the
XM_Qut put Fact ory. If Axiom isused (and in particular St AXUt i | s) than this can be achieved by
adding a XMLQut put Fact ory. properti es file with the following content to the classpath (in the
default package):

com ct c. wst x. out put EscapeCr =f al se
Now the output of the Java snippet shown above will be:

<r oot >Test
with CRLF</root>

Preserving CDATA sections during parsing

By default, St AXUt i | s creates StAX parsers in coaelescing mode. In this mode, the parser will never
return two character data events in sequence, while in non coaglescing mode, the parser is allowed to
break up character data into smaller chunks and to return multiple consecutive character events, which
may improve throughput for documents containing large text nodes. It should be noted that St AXUt i | s
overrides the default settings mandated by the StAX specification, which specifiesthat by default, a StAX
parser must be in non coalescing mode. The primary reason is compatibility: older versions of Woodstox
had coalescing switched on by default.

1See WSTX-94 [http://jira.codehaus.org/browse/WSTX-94] for a discussion about this.

15

http://jira.codehaus.org/browse/WSTX-94
http://jira.codehaus.org/browse/WSTX-94

Integrating Axiom into your project

A side effect of the default settings chosen by Axiom is that by default, CDATA sections are not
reported by parser created by St AXUti | s. The reason is that in coalescing mode, the parser will
not only coaelsce adjacent text nodes, but also CDATA sections. Applications that require correct
reporting of CDATA sections should therefore disable coalescing. This can be achieved by creating a
XMLI nput Fact ory. properti es filewith the following content:

javax.xm . stream i sCoal esci ng=f al se

Migrating from older Axiom versions

This section providesinformation about changesin Axiom that might impact existing code when migrating
from an older version of Axiom. Note that this section is not meant as a change log that listsall changes or
new features. Also, before upgrading to anewer Axiom version, you should always check if your code uses
methods or classes that have been deprecated. Y ou should fix all deprecation warnings before changing
the Axiom version. In genera the Javadoc of the deprecated class or method gives you a hint on how to
change your code.

Changes in Axiom 1.2.9

System properties used by OMAbst r act Factory

Prior to Axiom 1.2.9, OVAbst r act Fact or y used system properties as defined in the following table
to determine the factory implementations to use;

Object model: Plain XML

Method: get OMFact or y()

System property: om f act ory

Default: or g. apache. axiomominpl .|l omfactory. OMi nkedLi st | npl Factory
Object model: SOAP 1.1

Method: get SOAP11Fact ory()

System property: soapll. factory

Default: or g. apache. axi om soap.inpl .|l om soapll. SOAP11Factory

Object model: SOAP 1.2

Method: get SOAP12Fact or y()

System property: soapl2. factory

Default: or g. apache. axi om soap. i npl .||l om soapl2. SOAP12Fact ory

This in principle allowed to mix default factory implementations from different implementations
of the Axiom APl (eg. an OMFactory from the LLOM implementation and SOAP factories
from DOOM). This however doesn't make sense. The system properties as described above are
no longer supported in 1.2.9 and the default Axiom implementation is chosen using the new
or g. apache. axi om om OM\Vet aFact or y system property. For LLOM, you should set:

or g. apache. axi om om OM\et aFact or y=or g. apache. axi omom i npl .|l om factory. OMLi nkedLi
Thisisthe default and is equivalent to the defaults in 1.2.8. For DOOM, you should set:

or g. apache. axi om om OM\et aFact or y=or g. apache. axi om om i npl . dom f act or y. OvDOM\Eet aFa

Factories returned by St AXUti | s

In versions prior to 1.2.9, the XMLI nput Fact or y and XM_Qut put Fact or y instances returned by
St AXUti | s were mutable, i.e. it was possible to change the properties of these factories. This is
obviously an issue since the factory instances are cached and can be shared among several thread. To avoid

16

Integrating Axiom into your project

programming errors, starting from 1.2.9, the factories are immutable and any attempt to change their state
will resultinanl | | egal St at eExcepti on.

Note that the possibility to change the properties of these factories could be used to apply application wide
settings. Starting with 1.2.9, Axiom has a proper mechanism to allow this. Thisfeature is described in the
section called “ Changing the default StAX factory settings’.

Changes in XOP/MTOM handling

InAxiom 1.2.8, XML St r eanReader instances provided by Axiom could belong to one of three different
categories:

1. XMLSt r eanReader instances delivering plain XML.

2. XMLSt r eanReader instancesdelivering plain XML and implementing acustom extensiontoretrieve
optimized binary data.

3. XMLSt r eanReader instances representing XOP encoded data.

As explained in WSCOMMONS-485 [https:.//issues.apache.org/jira/lbrowse/WSCOMMONS-485] and
WSCOMMONS-488 [https://issues.apache.org/jiralbrowse/ WSCOMMONS-488], in Axiom 1.2.8, the
type of stream reader provided by the API was not always well defined. Sometimes the type of the stream
reader even depended on the state of the Axiom tree (i.e. whether some part of it has been accessed or not).

In release 1.2.9 the behavior of Axiom was changed such that it never delivers XOP encoded data unless
explicitly requested to do so. By default, any XM_St r eanReader provided by Axiom now represents
plain XML data and optionally implements the Dat aHandl er Reader extension to retrieve optimized
binary data. An XOP encoded stream can be requested from the get XOPEncodedSt r eammethod in
XOPUti | s.

17

https://issues.apache.org/jira/browse/WSCOMMONS-485
https://issues.apache.org/jira/browse/WSCOMMONS-485
https://issues.apache.org/jira/browse/WSCOMMONS-488
https://issues.apache.org/jira/browse/WSCOMMONS-488

Chapter 5. Common mistakes,
problems and anti-patterns

This chapter presents some of the common mistakes and problems people face when writing code using
Axiom, as well as anti-patterns that should be avoided.

Violating the j avax. acti vati on. Dat aSour ce
contract

When working with binary (base64) content, it is sometimes necessary to write a custom Dat aSour ce
implementation to wrap binary data that is available in a different form (and for which Axiom or the
Java Activation Framework has no out-of-the-box data source implementation). Data sources are also
sometimes (but less frequently) used in conjunction with OVSour cedEl enment and OvDat aSour ce.

The documentation of the Dat aSource is very clear on the expected behavior of the
get | nput St r eammethod:

~
*

* 0%k kX X X Xk

~

This method returns an | nput Stream representing

the data and throws the appropriate exception if it can

not do so. Note that a new | nput Stream obj ect nust be

returned each tine this nethod is called, and the stream nust be
positioned at the begi nning of the data.

@eturn an | nputStream

public InputStream getlnputStream() throws | OException;

A common mistakeisto implement the datasourcein away that makesget | nput St r eam” destructive”.
Consider the implementation shown in Example 5.1, “Dat aSour ce implementation that violates the

interface contract” . It is clear that this data source can only be read once and that any subsequent call to
get | nput St r eamwill return an already closed input stream.

The example shown is actually asimplified version of code that is part of Axis2 1.5 [http://svn.apache.org/repos/asf/webservices/axis2/tags/javal
v1.5/modules/kernel/src/org/apache/axis2/buil der/unknowncontent/InputStreamDataSource.java) .

18

http://svn.apache.org/repos/asf/webservices/axis2/tags/java/v1.5/modules/kernel/src/org/apache/axis2/builder/unknowncontent/InputStreamDataSource.java
http://svn.apache.org/repos/asf/webservices/axis2/tags/java/v1.5/modules/kernel/src/org/apache/axis2/builder/unknowncontent/InputStreamDataSource.java
http://svn.apache.org/repos/asf/webservices/axis2/tags/java/v1.5/modules/kernel/src/org/apache/axis2/builder/unknowncontent/InputStreamDataSource.java

Common mistakes,
problems and anti-patterns

Example5.1. Dat aSour ce implementation that violates the interface contract

public class |InputStreanDat aSource inplenents DataSource {
private final |nputStreamis;

public I nputStreanDat aSource(l nputStreamis) {
this.is =is;
}

public String getContentType() {
return "application/octet-streant;
}

public InputStreamgetlnputStreanm) throws | OException {
return is;
}

public String getName() {
return null;
}

public QutputStream getQutputStrean() throws | OException {
t hr ow new Unsupport edOperati onException();
}

}

What makes this mistake so viciousisthat very likely it will not cause problemsimmediately. The reason
is that Axiom is optimized to read the data only when necessary, which in most cases means only once!
However, in some cases it is unavoidable to read the data several times. When that happens, the broken
Dat aSour ce implementation will cause problems that may be extremely hard to debug.

Imagine for example2 that the implementation shown above is used to produce an MTOM message. At
first this will work without any problems because the data source is read only once when serializing the
message. If later on the MTOM threshold feature is enabled, the broken implementation will (in the worst
case) cause the corresponding MIME parts to be empty or (in the best case) trigger an /O error because
Axiom attemptsto read from an aready closed stream. Thereason for thisisthat when an MTOM threshold
is set, Axiom reads the data source twice: once to determine if its size exceeds the threshold® and once
during serialization of the message.

Issues that “magically” disappear

Quite frequently users post messages on the Axiom related mailing lists about issues that seem to disappear
by “magic” when they try to debug them. The reason why this can happen is simple. As explained earlier,
Axiom uses deferred building, but at the same time does its best to hide that from the user, so that he
doesn't need to worry about whether the object model has aready been built or not. On the other hand,
when serializing the object model to XML or when requesting apull parser (XMLSt r eanReader) from
a node, the code paths taken may be radically different depending on whether or not the corresponding
part of the tree has aready been built. Thisis especially true when caching is disabled.

While the end result should be the same in all cases, it is aso clear that in some circumstances an issue
that occurs with an incompletely built tree may disappear if there is something that causes Axiom to build

2For another example, see http://markmail.org/thread/omx7umk5fnpb6dnc.
3To do this, Axiom doesn't read the entire data source, but only reads up to the threshold.

19

http://markmail.org/thread/omx7umk5fnpb6dnc

Common mistakes,
problems and anti-patterns

the rest of the object model. What isimportant to understand is that the “ something” may be astrivial asa
cal tothet oSt r i ng method of an OVNode! Thefact that adding Syst em out . pri nt | n statements
or logging instructions is a common debugging technique then explains why issues sometimes seem to
“magically” disappear during debugging.

Finally, it should be noted that inspecting an OMNode in adebugger also causesacall tothet oSt ri ng
method on that object. This means that by just clicking on something in the “Variables” window of your
debugger, you may completely change the state of the process that is being debugged!

The OM-inside-OMDataSource anti-pattern

Weak version

OvDat aSour ce objects are used in conjunction with OMSour cedEl enment to build Axiom object
model instances that contain information items that are represented using a framework or APl other than
Axiom. Wrapping this “foreign” datain an OvVDat aSour ce and adding it to the Axiom object model
using an OVBour cedEl enent in most cases avoids the conversion of the data to the “native” Axiom
object model 4 The OVDat aSour ce contract reguires the implementation to support two different ways
of providing the data, both relying on StAX:

» Theimplementation must beableto provideapull parser (XMLSt r eanReader) fromwhich theinfoset
can beread.

» The data source must be able to serialize the infoset to an XMLSt r eamW i t er (push).

For the consumer of an event based representation of an XML infoset, it isin general easier to work
in pull mode. That is the reason why StAX has gained popularity over push based approaches such as
SAX. On the other hand for a producer such as an OvVDat aSour ce implementation, it's exactly the
other way round: it isfar easier to serialize an infoset to an XMLSt r eamW i t er (push) than to build an
XMLSt r eanReader from which aconsumer can read (pull) events.

Experience indeed shows that the most challenging part in creating an OVDat aSour ce implementation
istowritetheget Reader method. To avoid that difficulty someimplementationssimply build an Axiom
tree and return the XML St r eanmReader provided by OVEl enrent #get XMLSt r eanReader () . For
example, some ADB (Axis2 Data Binding) versions use the following code>:

Example 5.2. OvDat aSour ce#get Reader () implementation used by ADB

public XM.StreanReader get Reader () throws XM.StreanException {
MIOMAwar eOVBuUI | der nt omAwar eOMBUI | der = new MITOVAwar eOVBuUI | der () ;
serialize(nm omAwar eOMBuUi | der) ;
return nt omAwar eOVBUI | der. get OVEl enent (). get XMLSt r eanReader () ;

}

The MIOMAwar eOMVBUI | der class referenced by this code is a special implementation of
XMLSt reamW i t er that builds an Axiom tree from the sequence of events send to it. The code than
uses this Axiom tree to get the XML St r eanrReader implementation. While thisisafunctionally correct
implementation of the get Reader method, it isnot agood solution from a performance perspective and
also contradicts some of the ideas on which Axiom is based, namely that the object model should only
be built when necessary.

“An exception is when code tries to access the children of the OVSour cedEl enent . In this case, the OMSour cedEl enment will be expanded,
i.e. the datawill be converted to the native Axiom object model.

SFor the complete code, see http://svn.apache.org/repos/asf/webservices/axis2/tags/javalvl.5/modul es/adb/src/org/apachelaxis2/databinding/
ADBDataSource.java

20

http://svn.apache.org/repos/asf/webservices/axis2/tags/java/v1.5/modules/adb/src/org/apache/axis2/databinding/ADBDataSource.java
http://svn.apache.org/repos/asf/webservices/axis2/tags/java/v1.5/modules/adb/src/org/apache/axis2/databinding/ADBDataSource.java

Common mistakes,
problems and anti-patterns

Indeed, it should not be necessary to build an intermediary tree when requesting a pull parser from
the OVDat aSour ce because all the required information is already present in the ADB beans. Worse,
if the OVBour cedEl enent is expanded, the object modd instance will be built twice: once by the
get Reader and once by Axiom itself!

While constructing an Axiom treeinsidethe get Reader method is clearly an anti-pattern, at least in the
case of ADB it isnot as bad as it seems at first glance. The reason is that in the case which is the most
relevant for performance (which is sending a Web Service response prepared using ADB), Axiom will
only invoketheseri al i ze method and not make use of get Reader .

00000000, At the time of writing there is no general solution available to avoid the weak version of the
= OM-inside-OM DataSource anti-pattern in cases where it would be far too difficult to build
l | aproper XMLSt r eanReader implementation. Future versions of Axiom may implement
a solution that avoids the complexity of implementing XMLSt r eanReader without too

much performance trade-offs.

Strong version

There is aso a stronger version of the anti-pattern which consists in implementing the seri al i ze
method by building an Axiom tree and then seriaizing the tree to the XMLSt r eamW i t er . Except for
very specia cases, there is no valid reason whatsoever to do this! To see why this is so, consider the
two possible cases:

1. The OvDat aSour ce aready implements the get Reader method in a proper way, i.e
without building an intermediary Axiom tree. To properly implement seri al i ze, it is then
sufficient to pull the events from the reader returned by a call to get Reader and copy
them to the XMLStreanReader. The easiest and most efficient way to do this is using
St ream ngOVSeri al i zer:

Example 5.3. Proper implementation of the OVDat aSour ce#seri ali ze
method

public void serialize(XM.StreamWiter xml Witer) throws XM.StreanmException {
Stream ngOMVSeri al i zer serializer = new Stream ngOVSeri alizer();
serializer.serialize(getReader(), xm Witer);

}
There isthus no need to build an intermediary object model in this case.

2. Theget Reader method also uses an intermediary Axiom tree®. In that case it doesn't make sense to
use an OVBour cedEl enent inthefirst place! At least it doesn't make sense if one assumes that in
general the OMSour cedEl enent will either be serialized or its content accessed after being added
to thetree. Indeed, in this case the Axiom tree will be built at |east once (if not multiple times), so that
the code might as well use anormal QVEl enent .

This only leaves the very specia case where the OMSour cedEl enent is in genera neither
accessed nor serialized, either because it will usually be somehow discarded or because the code
uses OVDat aSour ceExt #get Obj ect () toretrieve the raw data. Even in that case one can argue
that in general it should not be too hard to implement at least the seri al i ze method properly by
transforming the raw or foreign data directly to StAX eventswritten to the XMLSt r eanW i t er .

00000000, Implementing theser i al i ze method to serialize directly to an XMLSt r eamV i t er
/ instead of using an intermediary Axiom tree of course still leaves the question about

21

Common mistakes,
problems and anti-patterns

QED

the get Reader method open. Since we are assuming that implementing get Reader
properly would be too complex (otherwise one could use the code shown in Example 5.3,
“Proper implementation of the OVDat aSour ce#seri al i ze method” to avoid the
OM-inside-OMDataSource anti-pattern entirely), one is forced to use the code shown
in Example 5.2, “OVDat aSour ce#get Reader () implementation used by ADB”
(and thus the weaker version of the anti-pattern). However this code depends on the
MIOMAwar e OVBuUI | der classwhichispart of axi s2- adb. In some cases, depending
on that library may not be an option. Therefore this class should probably be moved to
Axiom.

22

Chapter 6. Appendix

Program Listing for Build and Serialize

i mport org. apache. axi om om OVEl enment ;
i mport org.apache. axi om om i npl . bui | der. St AXOVBui | der;

i mport javax.xm .stream XM.I nput Fact orvy;

i mport javax.xm .stream XM.StreanExcepti on;
i mport javax.xm .stream XM.StreanReader ;

i mport java.io.FilelnputStream

i mport java.io.Fil eNot FoundExcepti on;

public class Test OMBui |l der {

/**

* Pass the file name as an argument

* @aram args

*/

public static void main(String[] args) {

try {
//create the parser

XM_St r eanReader parser = XM.I nput Fact ory. newl nst ance(). creat eXM.St r ean
St AXOMBui | der bui | der = new St AXOMBuI | der (par ser) ;

/1 get the root el enent

OMEl emrent docunent El ement = bui | der. get Docunent El enrent () ;

//dunmp the out put to console with caching
System out . printl n(docunent El enent.toStri ngWthConsune());

} catch (XM.StreanException e) {
e.printStackTrace();

} catch (Fil eNot FoundException e) {
e.printStackTrace();

}

}
Links

For basicsin XML

* Developerworks Introduction to XML [http://www-128.ibm.com/devel operworks/xml/newto/
index.html]

« Introduction to Pull parsing [http://www.bearcave.com/software/java/xml/xmlpull.html]
* Introduction to StAX [http://today.java.net/pub/altoday/2006/07/20/introducti on-to-stax.html]

e Fast and Lightweight Object Model for XML [http://www.jaxmag.com/itr/online artikel/
psecom,id,726,nodeid,147.html]

23

http://www-128.ibm.com/developerworks/xml/newto/index.html
http://www-128.ibm.com/developerworks/xml/newto/index.html
http://www-128.ibm.com/developerworks/xml/newto/index.html
http://www.bearcave.com/software/java/xml/xmlpull.html
http://www.bearcave.com/software/java/xml/xmlpull.html
http://today.java.net/pub/a/today/2006/07/20/introduction-to-stax.html
http://today.java.net/pub/a/today/2006/07/20/introduction-to-stax.html
http://www.jaxmag.com/itr/online_artikel/psecom,id,726,nodeid,147.html
http://www.jaxmag.com/itr/online_artikel/psecom,id,726,nodeid,147.html
http://www.jaxmag.com/itr/online_artikel/psecom,id,726,nodeid,147.html

Appendix

» Get the most out of XML processing with AXIOM [http://www-128.ibm.com/devel operworks/library/
x-axionm/]

24

http://www-128.ibm.com/developerworks/library/x-axiom/
http://www-128.ibm.com/developerworks/library/x-axiom/
http://www-128.ibm.com/developerworks/library/x-axiom/

References

Specifications

[XML] Extensible Markup Language (XML) 1.0 (Fifth Edition) [http://www.w3.0rg/TR/2008/REC-xml-20081126/].
W3C Recommendation. 26 November 2008.

25

http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/

