Table of Contents

CONTTGUIALION. ...ttt ettt ettt ee ettt e ettt e ettt e e bt e e sateeesaseeesabeeesseeessseeensseesnsseesnsseesanssseaeesesnnnssaeeaesennnns 2
ConfIGUIAtION FIE....cuuiiiiiiiiiii ettt e e e et e e e e e 2
Dependency rESOIULION.iiiiiiiiieiiie ettt ettt e et e e e et e e e e e eaaeeeees 4

STALE. ..ttt ettt ettt ettt ettt b e et eh et e bt a bt e bt e e ae e e bt e bt et e sh b e e bt e e abe e e e nbneees 6
StOT€ CONTTIGUIALION. ..ccuetiieiiieeiiee ettt ettt et te et e et e s e e e s bt e e sabteesabeeesabeeeeesnnstaeeeesesnnnseeeeeens 6
Store entrieS aNd UPAALES.......ccuviieruieeeiiieeeiiieeeieeeeieeesteeesteeestteeetreeeaeeessaeessseeessseeesssssseeesesnssssseaeens 7

CRANNELL......ceii ettt ettt et e ettt e bt e e st e s bt e e sabe e e s bt e e saneesannee 9
Channe] EVENES.cccuiiiiiiiiiieeeee ettt ettt ettt e b e st sabe e e e e e e s 9
ProxXies and REGISIIY....c.c..eiiuiiiiiiieiieeeie ettt ettt e e e e et e e e e e ebaeeees 10

0121 s 10) PSPPSRI 11
TP SEIVET PIOXYviiiiiiiiieiieiiiee ettt ettt e e e st e e e st e e e ssabbeee e s abaeeessnabaneeeeees 11
Synchronization ProtOCOL..........ccoviiriieiiiiriiiiee ettt e e 12

OULLEE PrOTOCOL.couiiiiiiieeeie ettt ettt et e st eebe e e sabae e s 13

TNIEE PIOTOCOL. ..ottt e e e e e ettt e e e s e e e e e aaaa e s e aaeseeannseeanaaees 13

Configuration

One of the utilities the MadgikCommons library offers is the Configuration utility. Its main
purpose is to serve configuration values to the various clients that are using it but as will become
apparent in the following paragraphs, it can be used to offer additional functionality. One of the key
features of the Configuration Ultilities is that is provides read only access to the values it exposes. If a
client needs to store information that will be available to later calls, the State Utility is the one to use.

Configuration file

The configuration file is the location where the parameters that are needed to be shared through
the ConfigurationManager are declared. The location of the configuration file is currently the directory
tht the application is running. This is something to be revised in following versions. A number of
alternatives can be considered such as

e the location is passed using traditional .properties files
e a number of predefined locations are scanned with a specific order
e an environmental variable defines the location

One, all or a conjunction of the above alternatives can be considered to define the location of
the configuration file.
The schema of the configuration file is the following:

<configuration>
<param > value </param>
<param > value </param>
<param > value </param>
<param > value </param>
</configuration>

The configuration file is simply a list of parameters. Each parameter defines a configuration

value the ConfigurationManager will be serving. Each parameter depending on its type can have a
different type of value. The parameter types that are available are the following:

o [ntegerClass
IntegerPrimitive
FloatClass
FloatPrimitive
DoubleClass
DoublePrimitive
ShortClass
ShortPrimitive
LongClass
LongPrimitive
BooleanClass
BooleanPrimitive
ByteClass
BytePrimitive

e String
XML
® Object

For the available primitives two different types are defined. One representing the boxed, and the
other the un-boxed type (Integer and int). This is needed because of the way the java framework treats
method signatures. As will become apparent later on, a parameter of a specific type can be used to
instantiate an object, call a specific class method etc. This is done through reflection which uses
argument types to discover the method that needs to be called. In case a method declares its signature
using a boxed type, it cannot be discovered using the un-boxed type and vise versa. This requires both
types, boxed and un-boxed to be specifically declared in the configuration parameter declaration.
Additionally, the XML type is basically the same with the String type with the difference that is
performs some basic escaping and un-escaping of the XML invalid characters. The Object type is the
most interesting of the available types as it represent a specific java class that can be instantiated,
manipulated, have one or more of its methods called and set values to other parameters.

Each of the parameter elements contain a number of attributes that define the name, type and
behavior of the parameter. These attributes are the following:

e name — Is the unique name with which any client can retrieve the value of the parameter.

e type — The type of the parameter. This must be one of the types listed above.

e generated — This value indicates whether the param element contains the value of the parameter
or the value will be generated by another parameter during its evaluation.

e internal — This value indicates the visibility modifier of the parameter. An internal parameter
cannot be seen by any of the clients.

e shared — This attribute is applicable only in parameters of type Object. The default behavior of

all parameters is to be served in a a non shared fashion. This means that if a client retrieves a
value, it will be its own local copy of the value. Changes it makes to this value will not be
reflected in other clients copies. For the Object type there is also the option to share the instance
that is served between the clients. Event though this possibility is given, the Configuration
utility does not provide any locking or synchronization methods to access the object. This
should be handled externally either by the clients or by the object itself. Additionally to having
this attribute set, the object that

Any modifications to the values exposed by the Configuration Utility are transient. Once the
ConfigurationManager is reinitialized, the changes will be lost. Initialization only takes pace once
when the class is first loaded.

An example of a configuration file for all the above types of parameters is the following:

<parameters>
<param name="parameterKeyl" type="IntegerClass" generated="false" internal="false">4</param>
<param name="parameterKey2" type="IntegerPrimitive" generated="false" internal="false">4</param>
<param name="parameterKey3" type="FloatClass" generated="false" internal="false">4.5</param>
<param name="parameterKey4" type="FloatPrimitive" generated="false" internal="false">4.5</param>
<param name="parameterKey5" type="DoubleClass" generated="false" internal="false">4.5</param>
<param name="parameterKey6" type="DoublePrimitive" generated="false" internal="false">4.5</param>
<param name="parameterKey7" type="ShortClass" generated="false" internal="false">4</param>
<param name="parameterKey8" type="ShortPrimitive" generated="false" internal="false">4</param>
<param name="parameterKey9" type="LongClass" generated="false" internal="false">4</param>

<param name="parameterKeyl0" type="LongPrimitive" generated="false" internal="false">4</param>
<param name="parameterKeyll" type="BooleanClass" generated="false" internal="false">true</param>
<param name="parameterKeyl2" type="BooleanPrimitive" generated="false" internal="false">true</param>
<param name="parameterKeyl3" type="ByteClass" generated="false" internal="false">0</param>
<param name="parameterKeyl4" type="BytePrimitive" generated="false" internal="false">0</param>
<param name="parameterKeyl5" type="String" generated="false" internal="false">Hello World</param>
<param name="parameterKeyl6" type="XML" generated="false" internal="true"> &It;x/> </param>
<param name="parameterKeyl7 type="String" generated="true" internal="false"/>
<param name="parameterKeyI8 type="0bject" generated="true" internal="false" shared="true"/>
<param name="parameterKeyl9" type="Object" generated="false" internal="false" shared="false">
<class value="full.package.name.ClassName"/>
<constructor>
<arguments>
<arg order="1"name="argl" param="parameterKeyl"/>
<arg order="2" name="arg2" param="parameterKey2"/>
<arg order="3" name="arg3" param="parameterKey3"/>
</arguments>
</constructor>
<calls>
<method order="1" name="methodl">
<arguments>
<arg order="1" name="argl" param="parameterKey4"/>
<arg order="2" name="arg2" param="parameterKey5"/>
<arg order="3" name="arg3" param="parameterKey6'/>

</arguments>

<output param="parameterKeyl7"/>
</method>

<method order="2" name="method2">
<arguments>

<arg order="1" name="argl" param="parameterKey8'"/>
<arg order="2" name="arg2" param="parameterKey9'/>
<arg order="3" name="arg3" param="parameterKeyl0"/>
</arguments>
<output param="parameterKey18"/>
</method>
</calls>
</param>
</parameters>

Dependency resolution

As it is obvious from the above example, a parameter can depend on other parameters. In the
above example in order to instantiate as describe the object parameter with name parameterKeyl19, the
parameters with names parameterKeyl, parameterKey2, parameterKey3, parameterKey4,
parameterKey5, parameterKey6, parameterKey8, parameterKey9, parameterKeylO must already be
available. Additionally, the parameters with names parameterKeyl7 and parameterKey18 are marked as
generated parameters, which means that the instantiation and evaluation of the parameter with name
parameterKeyl9 will assign them the values that will be retrieved from the invocation of the methods
methodl and method?2. The dependency graph that is constructed is apparent.

On the initialization of the ConfigurationManager, once when the class is loaded, this
dependency graph is constructed. Depending on its edges the evaluation of each parameter is
performed.

Currently the nodes of the graph are the parameters so a dependency that is self referencing

cannot be resolved and will cause an initialization error. A self referencing dependency is for example
when a method of an Object parameter needs as input a parameter that is generated by a method of the
same Object parameter which is invoked with a smaller order. Even though this limitation is not
considered very limiting since even in a case where this might appear there are workarounds such as an
intermediate, possibly internal, auxiliary parameter, it might impose some design restrictions or even a
costly workaround. In future versions the dependency resolving algorithm will be enhanced to contain
also this granularity of dependency resolution.

State

Another utility the MadgikCommons library offers is the State Store Utility. This utility offers
its clients the possibility to store key — value pairs which are persisted and can be reaccessed even after
VM restarts and host reboots. The value part of the pair can be any of a number of different types and
will be handled differently during storage and retrieval. The basic functionality this utility offers is at its
bases common to the one the Configuration Utility offers. The key difference is that while the
Configuration Ultility is read only for its clients, the State Store Utility is both read and write.

This separation of usage types was made having in mind the scenarios this two kinds of usages
are needed, the frequency that they would be normally appear in a client code and the scope of each.
One would expect to have frequent usage of a Configuration value possibly with many appearances in
the code. The purpose is to serve this with imposing minimum overhead as the Configuration Utility
described above aims to. On the other hand, a State manager aims to serve needs that have to do with
global application data. Data that would for example be created over a period of time and would be
stored as part of a check-pointing mechanism so that if needed the application will not need to restart
from the beginning.

Store Configuration

The State Store Utility uses the local filesystem to persist the state its clients register. To
accomplish this the StateManager uses two files in the local filesystem whose usage it separates, and
uses one as a registry file for storing metadata on the entries that are available, and another as a data
file for storing the actual payload the clients provide. Additionally, for converting characters to bytes
and vise versa for the serialization and deserialization operation, a character set needs also be
configured. Another configuration parameter that is expected is whether or not the StateManager
should cleanup any unneeded, invalid, entires from the registry as well as the data files.

The State Store utility relies on the Configuration Utility for these configuration values. More
specifically an example of the configuration parameters that needs to be added in the configuration file
is the following:

<param name="StateManager.CleanUpOnlnit" type="BooleanPrimitive" generated="false" internal="false"> perform
data and registry file clean up on initialization </param>
<param name="EncodingCharset" type="String" generated="false" internal="false"> charset name (eg. UTF-8)</param>
<param name="StateManager. EntryRegistryPathName" type="String" generated="false" internal="true">path to registry
file (eg./tmp/registryfile.data)</param>
<param name="StateManager.EntryRegistryFile" type="Object" generated="false" internal="false" shared="false">

<class value="java.io.File" />

<constructor>

<arguments>

<arg order="1" name="pathname" param="StateManager.EntryRegistryPathName'/>

</arguments>

</constructor>
</param>
<param name="StateManager.EntryDataPathName" type="String" generated="false" internal="true">path to data file
(eg./tmp/datafile.data)</param>
<param name="StateManager.EntryDataFile" type="Object" generated="false" internal="false" shared="false">

<class value="java.io.File" />

<constructor>

<arguments>

<arg order="1" name="pathname" param="StateManager. EntryDataPathName'"/>
</arguments>
</constructor>
</param>
<param name="StateManager.StateStorelnfo" type="0Object" generated="false" internal="false" shared="false">
<class value="gr.uoa.di.madgik.state.store.StateStorelnfo" />
<constructor>
<arguments>
<arg order="1" name="EntryRegistryFile" param="StateManager.EntryRegistryFile"/>
<arg order="2" name="EntryDataFile" param="StateManager.EntryDataFile"/>
</arguments>
</constructor>
</param>

The above configuration sets the character set name that will be used for character encoding and

decoding and make it accessible under the key EncodingCharset and it will also create a single instance
of the StateStorelnfo class that will not be shared across different clients so that it cannot be changed by
a different client. This storage information class contains the files that will be used to persist data. If the
configuration changes while there are already some entries stored, these entries will not be available
after the next reinitialization. The third parametrization value that is defined is whether or not the
StateManager should, upon initialization, perform an internal cleanup of its repositories.

Store entries and updates

For each entry a client submits to the StateManager, a metadata entry is created. This metadata

entry contains the following elements:

Key — When a client registers something to the StateManager, he also provides the key by which

he wants his object to be identified. This key is also used by the StateManager to uniquely

identify this object internally. This means that if two clients are using the same key, this entries

will be treated as if they were one and the same from the State Store utility.

Active flag — As a client can store and retrieve an object based on its key, he can also remove it

from the State Store. This is done by setting the entry as inactive.

Data Offset — The metadata entry is also the placeholder for storing the position of the actual

data it represents in the data file that it has been persisted. So the starting and ending offset of

the data in the data file is stored in the entry.

Registry Offset — Additionally to the data, the metadata entries are also persisted so that on

reinitialization the metadata entries can be reconstructed but also updated during the lifetime of

the entry. For this reason the exact position of the metadata entry in the registry file is also kept.

Type — A number of different types of entries can be stored and retrieved by a client. Depending

on their type the StateManager treats them differently.

o Alphanumeric — This represent a simple String that can be stored. To store the string as a
stream of bytes, a configurable character set is used.

o Byte Array — This represent an array of bytes that the client code provides and is stored as is
in the data file.

o File — This represent a file accessible form the local filesystem that the State Store will read
through and persist its full content.

o Serializable — This represents an object that is serializable as the java.io.Serializable
interface dictates and can be serialized and deserialized through the ObjectInputStream and
ObjectOutputStream java classes.

o ISerializable — This represents an object that implements a custom interface that defines
serialization and deserialization methods so that the class can define its own needed
serialization payload.

The StateManager defines different put methods for each of the described entries as well as
typed get convenience methods so that the client code does not have to perform any type casting or
additional serialization or deserialization operations. One of the additions that will be delivered in later
versions is to add compression capabilities for the data the clients store.

During the lifetime of a State Store, records become updated, deleted and inserted. Since the
registry as well as the data files are used in a sequential fashion to store new entries, and updates of the
data payload cannot be performed over the discarded older data to simplify data allocation policies and
speedup buffered sequential reads, both files might end up fragmented having large spaces of
unallocated spans. Files tend to grow and the State Store repositories are no different.

For this reason the StateManager exposes a method that cleans up the data and registry files
discarding entries that have been deleted, data that have been updated etc, compacting both files leaving
only the valid entries that are left. Since this process entails reading both files fully and writing the
valid payload again, it might impose a non negligible disk overhead depending on the amount of data
stored in the repository. Since during this process the in-memory metadata data structure is not in-sync
with the repository files, the StateManager does not allow any client to make any kind of operation.

This operation can currently be initiated by any client code, or using the Configuration entry
StateManager.CleanUpOnlnit which, if set, will dictate the StateManager to perform the clean up upon
initialization. In later versions more sophisticated options will become available such as statistics of
unneeded records, resources availability, client activity etc.

Channel

Another utility offered by the MadgikCommons library is the Event Channeling mechanism. In a
distributed environment, a lot of scenarios can make use of a mechanism that offers them the possibility
to open a communication channel among two or more entities to publish information that will travel to
all of the channel partners.

The Event Channeling mechanism offers this functionality through a distributed event
mechanism. A single entity initiates a channel and publishes its existence. This point acts as a sink for
the events the other entities emit and as a broker to reproduce the incoming events to the remaining
entities. Other entities that receive the identifying object pointing to the created channel connect to it
and can from then on receive events that the rest of the entities emit, but also emit their own events.

Channel Events

As the Event Channeling mechanism bases its functionality on the brokerage of events, a
fundamental concept of the mechanism is the ChannelEvent. The events declared here are the ones that
define the flow of control governing the lifetime of a channel, its creation, brokerage, synchronization
and destruction. Each record pool has associated a ChannelState class in which the events that the
channel can emit are defined and through which an interested party can register for the event. The
ChannelState keeps the events in a named collection through which a specific event can be requested.

The event model used is a derivative of the Observer — Observable pattern. Each one of the
events declared in the package and stored in the ChannelState event collection extends java Observable.
Observers can register for state updates of the specific instance of the event. This of course means that
there is a single point of update for each event which automatically raises a lot of issues of concurrency,
synchronization and race conditions. So the framework uses the Observables for Observers to register
with, but the actual state update is not carried through the Observabe the Observers have registered
with, but rather as an instance of the same event that is passed as an argument in the respective update
call. That way the originally stored Observable instances in the ChannelState act as the registration
point while a new instance of the Observable that is created by the emitting party is the one that
actually carries the notification data.

All events extend the ChannelStateEvent which in turns implements the Observable interface
and the ISerializable . The later is used during transport to serialize and deserialize an event and is
explained in later sections. Events containing payload information that the client wants to emit to
registered entities, extend the ChannelPayloadStateEvent which in turn extend the base
ChannelStateEvent. The events defined and are the bases of the framework are the following:

e DisposeChannelEvent — This event is emitted when the channel is no longer needed and signals
the disposal of the channel and all associated state. Since more than one entities, and not limited
to two can be part of a single channel, any of these entities can cause the DisposeChannelEvent.

e BytePayloadChannelEvent — This event can be emitted by any of the channel's nozzles and be
carried to all the rest of the participating nozzles. It carries with it a payload of a byte array that
can be set on the emitting point.

e StringPayloadChannelEvent — This event can be emitted by any of the channel's nozzles and be
carried to all the rest of the participating nozzles. It carries with it a payload of a string that can
be set on the emitting point.

e ObjectPayloadChannelEvent — This event can be emitted by any of the channel's nozzles and be
carried to all the rest of the participating nozzles. It carries with it a payload of an object that

can be set on the emitting point. The object payload must implement a needed ISerializable
interface that declare how the object can be serialized and deserialized in case over the wire
transportation is needed.

Proxies and Registry

The two main actors in an Event Channeling mechanism scenario is the entity that creates an
event sync / broker (inlet nozzle) and a number of entities that can register to this and consume events
other entities emit but also emit their own events (outlet nozzle). The inlet creates a channel that the
outlet needs to access. The two main cases one may distinguish between in this scenario is an outlet that
is collocated with the inlet in the same host and the same VM in which case they share a common
address space. The second case is that the two actors do not share the address space. This may mean
that the inlet and outlet are running in a different VM either in the same or in a completely different
host. The inlet and outlet should not be forced to make this distinction in their code. The Event
Channeling mechanism frees them from handling the two cases differently and allows them to have the
same behavior in their code regardless of the other party location. This is achieved through the proxy
concept.

A proxy is in fact a mediator between the two actors. Different types of proxies can handle
different type of communication, can be initialized with different synchronization protocols, and use
different underlying transport technologies. All this are known to the client only at a declarative level in
case he may want to have more control over the mechanics of the framework. Different
implementations if the proxy semantics can be provided by implementing the /ChannelProxy interface.
Every proxy implementation will still need to provide a marshalable identification mechanism which
can be send over to an outlet side which will in turn use it to initialize a new proxy instance that will
mediate on his side the channel synchronization. This object is an implementation of the
IChannelLocator interface. Implementations of this interface are capable to identify uniquely a channel.
They must also hold enough information to contact the inlet side proxy that mediates the instantiating
side of the mechanism. This implies information on the protocol used, and any protocol specific
information needed by the outlet side proxy.

In any case of either collocated and remotely located inlets and outlets, there is always the case
where a channel needs to be identified within the address space of the VM that it was created. To do so,
since the identification token needs to be serializable and movable to a remote location a java reference
is not adequate. There needs to be a different construct that will identify uniquely the channel and
through it the channel itself can be retrievable. This construct in the Event Channeling mechanism is the
ChannelRegistry class. The ChannelRegistry is a static class unique within the context of a VM in
which channels can registered, assigned within a unique id and discoverable through it. Whenever a
inlet wants to make the channel it is creating available for consumption trough a proxy, it registers the
channel and the proxy through which the channel will be available with the ChannelRegistry class. The
registration procedure produces a registry key consisting of a UUID. The channel and associated proxy
is stored in the registry for future reference through the registry key and the produced registry key is
provided back to the registration procedure caller to use it to produce the locator that will be able to
identify the channel through it. The registry construct needs also be registered to some of the channel
events so that it will be able to perform its own cleanup once the channel is disposed.

The ChannelRegistry is also the place where additional information on the function of each
channel it stores is kept. This information includes the number of outlets that can be connected to a
single channel. Since every time an outlet needs to get connected to a channel it must pass through the

ChannelRegistry, this is also the policy enforcing point on the number of outlets that can be connected
to a single channel depending on the initialization configuration. Additionally, the ChannelRegistry
keeps track of the method each outlet uses to connect to each channel as well as their identity. This way
proper cleanup can be performed, but also in cases of broadcasting like behavior, the whole set of
outlets connected to a single inlet can be discovered.

Local Proxy

A common case in a dynamically distributed environment scenario is the one in which the
entities that need to communicate are collocated, running within the boundaries of the same VM,
possibly in different threads if their execution is concurrent or even serially one after the other. In such
a situation it is obvious that for performance and for resource utilization reasons one would prefer to be
able to access directly through the shared memory address space the events the inlet is emitting or
brokering within the outlet.

The Event Channeling mechanism design and operation facilitates its usage as a shared event
registration and brokerage point. The synchronization of inlet and outlet parties through events makes
transparent for both actors the actual location of their counterpart. In this environment the only thing
missing to enable optimized local consumption of a channel is a way to pass to the outlet a reference to
the channel handled by the inlet. To do so in a manner that would hide from the two actors the actual
location of each other and not force them to apply any kind of logic to distinguish between the two
cases, the mechanism's registration and mediation classes comes in.

Once the inlet is ready to start its function as an event sync and brokerage point, it will register
its channel with the ChannelRegistry class as described in previous sections. For the registration step an
IChannelProxy implementing instance must be provided. Should the outlets that will need to contact
the created channel need to be restricted to being collocated with the inlet (this knowledge is assumed
to exist somewhere in the system, quite possibly to the component orchestrating the execution) an
instance of the LocalChannelProxy class will be provided for the registration step. During the
registration process the created channel will be assigned to the LocalChannelProxy class. From then on
the proxy can be queried to produce an IChannelLocator instance. The LocalChannelProxy class will
produce an instance of the LocalChannelLocator class. This locator can me serialized and deserialized
to produce a new LocalChannelLocator instance that can still identify the referenced channel through
the ChannelRegistryKey that was assigned to the channel and set to the LocalChannelProxy. This
locator can in turn be used to create a new LocalChannelProxy instance and used to instantiate a new
outlet that can connect to inlet's channel. The channel used will be a reference to the one produced
since the LocalChannelProxy can lookup the ChannelRegistry to retrieve the stored channel associated
with the LocalChannelLocator stored registry key.

TCPServer Proxy

The general case in a dynamically distributed environment scenario is to be unaware of the
location of the two actors or specifically know that they are located in different hosts or in general
different VMs. This means that no in memory reference can be shared. Connected nozzles must
communicate externally to be able to synchronize their operation and exchange events.

As has already been described in the LocalChannelProxy synchronization scenario the outlets
and inlets of a channel are already able to synchronize based on events emitted through the channel. In
the protocol section we will illustrate how the events and data that are passed through a channel can be

transferred and mirrored to a remote copy of the channel. The only thing left to enable remote
production and consumption is a technology to transfer the protocol packets. Multiple protocols can be
used and in this section the case of a TCP connection use case will be illustrated. Since the inlet and
outlets need not be aware of any of the underlying technology details, the proxy and registration classes
of the framework are the ones managing all needed technology specific details.

As in the case of the LocalChannelProxy the inlet at some point needs to share his event
aggregation channel with a number of outlets. He will again go through the registration procedure but
this time instead of a LocalChannelProxy proxy instance, a TCPServerChannel Proxy instance is passed
to the registration method. The first time a producer creates an instance of the TCPServerChannel Proxy
within the boundaries of a VM, a TCPTransportServer instance is created following the singleton
pattern. From then on any instance of the TCPServerChannelProxy is directed to this server to manage
its communication needs. The port the server listens to is configured through the already available
configuration class of the proxy instance and after initialized, all traffic will pass through this port.

Once the registration process is completed by the inlet, the inlet's side proxy, transport
mechanism and protocol are all ready to accept incoming calls. The proxy is in a position to create a
valid IChannelLocator instance which for the TCPServerChannelProxy will be a TCPChannelLocator.
The TCPChannelLocator contains the referenced channel RegistryKey, the hostname the producer is
running on and the port the server is listening to. This locator can be serialized and deserialized into a
new TCPChannelLocator that can be used to initialize an outlet to access the remote channel through a
newly initialized trasnsporting protocol mechanism created from the TCPServerChannelProxy of the
outlet.

The server uses the ChannelRegistry to keep and update a mapping between served channels
and open sockets. Upon request it can provide interested parties with the sockets that are associated
with the channel they are mediating for through the ChannelRegistry. Upon disposal of the channel, the
internal state of the ChannelRegistry connected to the specific channel is also purged along with the
connected sockets.

To be able to create such a mapping between the channel and the specific socket, the server
bases its functionality to the outlet send UUID of the channel it needs to connect to as provided through
the locator instance it is initialized with. This information is always send out as clear text along with an
identifier that will uniquely identify the connecting nozzle.

Furthermore a vulnerability this implementation has is the way the server expects to retrieve the
referenced channel UUID and nozzle identifier to map the opened socket. After opening a socket, the
server will block waiting for the consumer to send its channel UUID and nozzle identifier. Until the
information is provided, no other outlet will be accepted by the server. This leaves open ground for a
denial of service attack but was chosen not to be handled by a separate thread spawned to save
resources.

Synchronization protocol

Whenever an inlet and a number of outlets share a channel there needs to be some
synchronization between them both to ensure access integrity but also to enable remote consumption.
When the inlet and outlets are collocated, the synchronization is done without mediation directly
through the events exposed by the shared channel. When the communication is mediated there is a need
for a synchronization protocol that will handle the forwarding of locally produced events and their
interpretation as well as the marshaling and unmarshaling of events and their payload.

This is the work of the synchronization protocol implementing classes. Specifically there are

two classes that participate, the InletProtocol and OutletProtocol, that act on behalf of the inlet and
outlet respectively.

Outlet Protocol

First the protocol needs to create a local copy of a channel the inlet is serving. It contacts the
InletProtocol sending the channel identifier and the nozzle identifier of the outlet it acts on behalf of.
After this the thread enters the protocol loop that is ended once the the local or remote channel is
declared as disposed. The three steps of the protocol loop are

1. Send any locally produced events that have been produced directly by the mediated nozzle.

2. Receive any events that the inlet has to send and forward them to the local channel unless the
received event was originally emitted by the mediated nozzle.

3. Repeat either when a configurable predefined period has elapsed or the outlet has produced
some event.

Inlet Protocol

The protocol acts on behalf of the inlet nozzle and is responsible of aggregating all connected
outlet nozzle events, as well as forwarding aggregated events to all connected outlet nozzles as well as
the inlet channel. The protocol thread once created, enters a protocol loop whose steps are the
following:

1. Consults the ChannelRegistry to find the connected outlets to the channel it mediates for.

2. Waits for all connected outlet nozzles to be ready to send their produced events

3. Receives all the events each outlet nozzle has to send and for each event, if it was not originally
emitted by the inlet, it forwards it to the local channel.

4. Emits to each outlet nozzle the events that were produced in the local channel since the last
iteration as long as the event was not originally emitted by the current outlet nozzle.

The reason the protocol waits for all connected outlet nozzles to be ready before it starts its
protocol iteration is to simplify the procedure as otherwise it would need to keep a detailed mapping of
all events it has send to each connected outlet. This in cases of long interactions and selective big delays
could mean a possibly very big detailed list that would consume a lot of resource. On the other hand the
current approach could cause a delay on healthy outlet nozzles because of a single outlet nozzle with
bad connectivity. Alternatives to the problem will be investigated in later versions.

	Configuration
	Configuration file
	Dependency resolution

	State
	Store Configuration
	Store entries and updates

	Channel
	Channel Events
	Proxies and Registry
	Local Proxy
	TCPServer Proxy
	Synchronization protocol
	Outlet Protocol
	Inlet Protocol

